Printe	ed Pag	_	ubject Code:- BMICSE02 Coll. No:	204
NO	IDA 1	INSTITUTE OF ENGINEERING AN	 ID TECHNOLOGY. GRI	EATER NOIDA
2,0		(An Autonomous Institute Affil	•	
		M.Tech. (In	•	
		SEM: II - THEORY EXAMI		
Tim	o. 3 E	Subject: Discrete Hours	e Structures	Max. Marks: 100
		structions:		Max. Marks. 100
		y that you have received the question pa	per with the correct course,	code, branch etc.
1. Thi	s Que	stion paper comprises of three Sections	-A, B, & C. It consists of M	Iultiple Choice
		MCQ's) & Subjective type questions.		
		n marks for each question are indicated	· ·	question.
		your answers with neat sketches wherev suitable data if necessary.	ver necessary.	
		ly, write the answers in sequential order	•	
•	•	should be left blank. Any written materia		ot be
evalud	ited/cl	hecked.		
SECT	TON-	<u>-A</u>	25	20
1. Atte	empt a	all parts:-		
1-a.	A	is an ordered collection of	objects. (CO1,K1)	1
	(a)	Relation		
	(b)	Function		
	(c)	Set		
	(d)	Proposition		
1-b.	A	relation R from a set A to a set B is a: (CO1,K2)	1
	(a)	Subset of AUB		
	(b)	Subset of AnB		
	(c)	Subset of A×B		
	(d)	Subset of B×A		
1-c.	Α	semigroup is an algebraic structure (S,	*) where * is a binary	v operation 1
		hat is: (CO2, K2)	,	,
	(a)	Closed		
	(b)	Associative		
	(c)	Both closed and associative		
	(d)	Closed, associative, and has an identity	y element	
1-d.	In	n a Boolean algebra, which of the follow peration? (CO2, K1)		For the Λ 1
	(a)	0		

	(b)	1	
	(c)	a	
	(d)	a'	
1-e.		partially ordered set (poset) is a set with a binary relation that is: (CO3,K2)	1
	(a)	Reflexive and symmetric	
	(b)	Reflexive and transitive	
	(c)	Reflexive, antisymmetric, and transitive	
	(d)	Symmetric and transitive	
1-f.		a lattice, which of the following is always true? (CO3, K4)	1
	(a)	ava=a (Idempotent Law for join)	
	(b)	ana=a (Idempotent Law for meet)	
	(c)	avb=bva (Commutative Law for join)	
	(d)	All of the above	
1-g.	` ,	et P: I am in Delhi.; Q: Delhi is clean.; then q Λ p (q and p) is? (CO4, K3)	1
C	(a)	Delhi is clean and I am in Delhi	
	(b)	Delhi is not clean or I am in Delhi	
	(c)	I am in Delhi and Delhi is not clean	
	(d)	Delhi is clean but I am in Mumbai	
1-h.	W	Which of the following is NOT a valid propositional operator? (CO4, K2)	1
	(a)	AND	
	(b)	OR	
	(c)	NOT	
	(d)	SOMETIMES	
1-i.	W	Which matrix is used to represent adjacency between vertices? (CO5, K1)	1
	(a)	Adjacency matrix	
	(b)	Incidence matrix	
	(c)	Path matrix	
	(d)	Distance matrix	
1-j.	If a graph has a chromatic number of 1, it must be: (CO5, K4)		
	(a)	Null graph	
	(b)	Complete	
	(c)	Empty (no edges)	
	(d)	Tree	
2. Att	empt a	all parts:-	
2.a.		xplain the difference between ordered and unordered pairs. Why is the order nportant in the Cartesian product of sets? (CO1, K2)	2
2.b.	S	tate the defining property of a commutative binary operation $*$ on a set S.	2

	(CO2, K1)	
2.c.	Explain the following terms with appropriate examples: (CO3, K2) i) Homomorphism ii) Cyclic Group iii) Group	2
2.d.	Differentiate between <i>Modus Ponens</i> and <i>Modus Tollens</i> ? Provide an example to distinguish between the two. (CO4, K4)	2
2.e.	How is the number of edges calculated in a complete graph and a regular graph? (CO5, K3)	2
SECT	ION-B	30
3. Ansv	wer any <u>five</u> of the following:-	
3-a.	Consider the sets A={1,2,3} and B={a,b}. (CO1, K3) (a) Find the Cartesian product A×B. (b) Determine the power set of A, denoted by P(A). (c) Define a relation R from A to B such that R={(x,y) x∈A,y∈B,and x+1 corresponds to the position of y in the a List the elements of R.	6 alphabet
3-b.	Define the following types of relations: (CO1, K3) 1. Reflexive 2. Symmetric	6
	3. Asymmetric 4. Antisymmetric	
3-c.	(i) Explain why the identity element in a group is always unique. (CO2, K4) ii) Explain why the inverse of each element in a (G,*) is unique.	6
3-d.	Consider the group ($\{0,1,2,3\}$, +4) under addition modulo 4. Find whether it satisfies the Commutative property or not. (CO2, K3)	6
3.e.	Given a set A={2,3,4,5,6,10,12,24} with the 'divides' relation (): (CO3, K3) 1. Draw the Hasse diagram of the poset (A,). 2. Identify all minimal and maximal elements, 3. Determine if there is a greatest and a least element in this poset.	6
3.f.	State the difference between tautology, contradiction, and contingency (CO4, K4) 1. Provide one example each 2. Construct truth tables to justify your examples.	
3.g.	Let G=(V,E) be an undirected, simple graph with V =6 and the degree sequence (3,3,2,2,2,2). (CO5, K4) (a)Draw a graph corresponding to this degree sequence (b) Is the graph complete graph or not? Justify your answer (c) Is the graph Eulerian? Explain why or why not	6
SECT	ION-C	50
4. Ansv	wer any one of the following:-	
4-a.	Given a set A and a relation R on A. Discuss the properties that R must satisfy for	10

	K3)	
4-b.	What is a Venn Diagram? Explain set operations using Venn Diagrams. A group of 65 people includes 40 who like cricket, and 10 who like both tennis and cricket. (CO1, K3)	10
5. Answe	er any one of the following:-	
5-a.	Consider the group ({1,2,3,4,5,6} +7), of addition modulo 7. (CO2, K3) (a) Determine whether it forms a group. (b) Explain addition modulo and multiplication modulo with suitable examples.	10
5-b.	Consider the poset ($\{2,3,4,6,12,18,36\}$, $ $), where $ $ denotes the divisibility relation. (CO2, K4)	10
	 Draw the Hasse diagram for this poset. Identify all maximal and minimal elements. Determine if this poset is a lattice. Justify your answer. 	
6. Answe	er any one of the following:-	
6-a.	Draw the Hasse diagram of power set $P=(P(\{a,b,c\}),\subseteq)$. (CO3, K4) (a). Is this poset a lattice? Justify your answer. (b). Provide an example from the above hasse diagram of supremum and/or an infimum.	10
6-b.	Prove Idempotent law and Associative law in lattice, including the join (v) and meet (Λ) operations with a help of an example. Also describe Distributive lattice and Bounded lattice with a help of an example. (CO3, K4)	10
7. Answe	er any <u>one</u> of the following:-	
7-a.	Convert the following compound propositions into CNF: (a) $(p \rightarrow q) \land (q \lor (p \land r))$ (b) $p \land (p \rightarrow q)$ (c) $(p \rightarrow q) \land (q \lor (p \land r))$. (CO4, K4)	10
7-b.	Define all laws in propositional logic algebra and prove any four using truth tables. (CO4, K4)	10
8. Answe	er any <u>one</u> of the following:-	
8-a.	Illustrate Graph coloring and chromatic number with a help of an example. Give an example of a graph with chromatic number 2 and one with chromatic number 3. Also prove that every complete graph is a regular graph but every regular graph is	10
	not complete graph. (CO5, K4)	
8-b.	What are planar and non-planar graph. Explain with a help of an example. Determine whether 5 vertices graph is planer or not. Illustrate with a help of an example. (CO5, K3)	10

its transitive closure R+ to be equal to its reflexive transitive closure R*. Provide an example of a relation where R+=R* and an example where R+=R*. (CO1,